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Do I look like I’m sure?: Partial metacognitive access to the low-level aspects of one’s own 1 

facial expressions 2 

Abstract  3 

As humans we communicate important information through fine nuances in our facial expressions, 4 

but because conscious motor representations are noisy, we might not be able to report these fine 5 

movements. Here we measured the precision of the explicit metacognitive information that young 6 

adults have about their own facial expressions. Participants imitated pictures of themselves 7 

making facial expressions and triggered a camera to take a picture of them while doing so. They 8 

then rated how well they thought they imitated each expression. We defined metacognitive access 9 

to facial expressions as the relationship between objective performance (how well the two pictures 10 

matched) and subjective performance ratings. As a group, participants’ metacognitive confidence 11 

ratings were only about four times less precise than their own similarity ratings. In turn, machine 12 

learning analyses revealed that participants’ performance ratings were based on idiosyncratic 13 

subsets of features. We conclude that metacognitive access to one’s own facial expressions is 14 

only partial.  15 

Keywords: Metacognition, Facial expressions, Confidence   16 

 17 
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 19 

Introduction 20 

Precise motor planning and execution can occur without the brain having explicit, conscious 21 

access to the exact position of our limbs, or the exact degree of contraction of our muscles (Kal 22 

et al., 2018; Kleynen et al., 2014; Taylor & Ivry, 2013). For instance, we can simultaneously walk, 23 

speak, and gesticulate successfully while concentrating on an argument and not on the 24 

movements that enable it, and we are furthermore unable to accurately report the state of each 25 

of our muscles. Although explicit access to proprioceptive signals in highly routine tasks like 26 

walking or talking may be unnecessary, it might be beneficial in some other cases. For example, 27 

it has been suggested (MacIntyre et al., 2014) that metacognitive reasoning plays a central role 28 

in developing and improving motor expertise: if an experienced actor has a detailed and 29 

sophisticated representation of an ideal facial expression to communicate emotion, they are better 30 

able to detect and correct deviations from the ideal, leading in turn to more accurate and 31 

consistent performance. 32 

Proprioceptive information about our limbs and their movements is thought to originate primarily 33 

from muscle spindles, together with skin receptors, Golgi tendon organs, and joint receptors 34 

(Proske & Gandevia, 2012; Sherrington, 1906; Tuthill & Azim, 2018). Artificial vibration of the 35 

muscles can lead to activation of the muscle spindles, showing that their activation is sufficient to 36 

alter the representation of the body and its position (Goodwin et al., 1972; Lackner, 1988). In 37 

addition, position estimates have been found to be more precise following active vs. passive 38 

movements, suggesting that efferent motor commands may either affect or inform proprioceptive 39 

representations (Craske & Crawshaw, 1975; Fuentes & Bastian, 2010; Gritsenko et al., 2007). 40 

Finally, proprioceptive information is combined with visual information, when available, to form a 41 

multisensory and integrated representation (Limanowski & Blankenburg, 2016; Ruttle et al., 2018; 42 

Sober & Sabes, 2005; van Beers et al., 2002). 43 

Facial expressions present a particularly important yet poorly studied instance of motor control. 44 

On the one hand, we communicate a great deal of information with small, nuanced facial 45 

movements − on the order of 10 mm or less (Clark Weeden et al., 2001; Coulson et al., 2000). 46 

On the other hand, we hardly ever see ourselves while making them. Perhaps apart from actors 47 

or public speakers who practice in front of a mirror (or the increased number of video-calls during 48 

the 2020 SARS-CoV-2 pandemic), we do not usually have online visual feedback about our facial 49 

muscles. Visual feedback information has been shown to be necessary to guide learning in the 50 
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imitation of one’s own expressions (Cook, Johnston, Heyes 2013), suggesting that facial 51 

movements might be poorly represented if they are based on motor information alone. Together, 52 

the combination of the high social relevance of small movements in our facial muscles and the 53 

general lack of visual information about them raise the interesting question: How accurate and 54 

precise is our knowledge about the way we look when we make facial expressions? 55 

Previous studies have focused on related questions. One line of research has quantified 56 

metacognitive access to others’ facial expressions and operationalized metacognitive 57 

performance as the precision of participants’ representations of uncertainty (Bègue et al., 2019; 58 

Chen et al., 2019; Lapate et al., 2020). While our ability to accurately represent both the facial 59 

expressions of others and our certainty about them is clearly critical for social interactions, it is 60 

equally important to correctly represent and adequately control one’s own expressions (Shea et 61 

al., 2014). In line with this notion, previous research measured how accurately we can report the 62 

emotions we feel and express (Gross & John, 1997; Rosenberg & Ekman, 1994; Wagner et al., 63 

2003). While reports of experienced emotions generally match observers’ ratings of facial 64 

expressions, human volunteers tend to overestimate their expressivity (Barr & Kleck, 1995; 65 

Gilovich et al., 1998; Qu et al., 2017). This work has focussed on the emotional content of facial 66 

expressions, but it remains possible that our access to the low-level details of our faces and facial 67 

expressions is poor. Throughout this work, we will make this distinction between the high-level 68 

aspects of a facial expression (namely, the emotion that they communicate) and low-level aspects 69 

(the specific shape and constellation of facial features that make up that expression). This 70 

distinction can be tied to the motor control literature where, for example, the concept of motor 71 

abundance describes the phenomenon that virtually any motor goal can be reached in a 72 

multiplicity of ways (Latash, 2012), which need not be consciously controlled. Akin to that concept, 73 

we note that any given emotional content could be communicated in a multiplicity of ways. 74 

Therefore, we may know what we communicate, but not how we communicate it. Indeed, 75 

participants systematically overestimate the width, but not the length, of their faces (Fuentes, 76 

Runa, et al., 2013; Longo & Holmes, 2020; Mora et al., 2018), mimicking what has been described 77 

for whole bodies (Fuentes, Longo, et al., 2013) and hands (Longo & Haggard, 2010). More 78 

recently, large inter-individual differences have been described in how accurately healthy young 79 

adults can represent their own faces (Maister et al., 2020). These previous studies investigated 80 

relaxed faces with neutral expressions and captured, in essence, individuals’ ability to accurately 81 

describe their face, or to discriminate it from the face of another. Importantly, static features of 82 

one's face are irrelevant to social interactions, which instead are based on dynamic information. 83 

Here, we focussed instead on metacognitive access to how one’s face varies when making 84 
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different expressions. In a pre-registered experiment, we asked participants to imitate expressions 85 

shown in pictures of themselves and to rate their confidence in their own performance. In other 86 

words, participants provided a subjective rating about how well they thought they had imitated 87 

each expression. We then measured participants’ metacognitive access to their own facial 88 

expressions as the correspondence between subjective ratings and an objective measure of 89 

performance. We calculated the Euclidean distance between landmarks placed automatically on 90 

each of the faces in a pair and used this distance as an objective measure of (inverse) 91 

performance. We predicted that, if participants had precise metacognitive access to the details of 92 

their own facial expressions, we would observe a negative relationship between confidence and 93 

distance between two faces. This would imply that participants (correctly) provided low confidence 94 

on trials where the two images differed the most. If, on the other hand, participants had no 95 

metacognitive access to these low-level details, we expected to find no relationship between 96 

subjective and objective measures. The magnitude of the slope parameter between confidence 97 

and distance effectively quantifies the precision of confidence judgments.  98 

 99 

 100 
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 101 

Figure 1: Experimental Design. (A.) Procedure. Cue stimuli were pictures of facial expressions taken 102 
from the MPI Small Facial Expression Database (Cunningham et al., 2005). They were performed by actors 103 
and represented non-stereotypical expressions (e.g., “You lose the way in a foreign city”, see Methods for 104 
further details). Participants used these images as cues to produce 32 participant-specific target images. 105 
In part 2, each of the 32 target images (of the participants’ faces displaying the expression generated in 106 
part 1) was shown eight times (256 trials total). Participants reproduced their own expressions shown in the 107 
target pictures, pressed a key while holding their expression, and subsequently rated confidence in their 108 
own performance. The experiment was self-paced. Squares around the pictures indicate that they were 109 
displayed to participants, whereas pictures without a square frame around them represent pictures collected 110 
but not shown back to participants. (Expression drawing: Freepik.com) (B.) Predictions. The correlation 111 
between the two variables indicates the precision of the metacognitive representation. Confidence ratings 112 
were expected to be negatively correlated with the distance between two images if participants have 113 
metacognitive access to the low-level aspects of their facial expressions (solid line). Confidence ratings 114 
were not expected to vary with distance if participants had no metacognitive access to their own facial 115 
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expressions (dashed line). (C.) Sample cue stimuli. Note that the cue expressions were not unnatural, but 116 
hard to label as one of the basic emotions. (D.) Apparatus. Participants sat in front of a dark display box 117 
and saw the pictures projected from a computer screen reflected on a half-plated mirror (tilted 45°). Behind 118 
the mirror, positioned directly in front of participants’ gaze, a digital camera took pictures of the participants 119 
when they pressed the corresponding key. This way, participants could look simultaneously directly at the 120 
to-be-imitated picture and into the camera. 121 

 122 

Material and Methods 123 

Participants 124 

Following our pre-registered plan (https://osf.io/pnyw3), 40 healthy participants took part in the 125 

study after giving informed consent (21 female, 19 male mean ± SD: 28.2 ± 4.6 years). We based 126 

the sample size on pilot data from 12 participants (see SI) and previous studies of motor 127 

metacognition from our group. Exclusion criteria were a recent history of psychiatric disease or 128 

having a heavy beard, as we reasoned that it would occlude the view of part of the face and 129 

placing of the landmarks. The local ethics committee approved all procedures (Nr. 2017-23-R), 130 

which conformed to the Declaration of Helsinki.  131 

Apparatus 132 

The experimental setup consisted of a stimulus computer, a digital camera, a screen, and a half-133 

silvered mirror tilted 45° from the vertical (Figure 1.D). Participants saw the image displayed on 134 

the screen by the stimulus computer indirectly through its reflection on the half-silvered mirror. 135 

Behind the mirror, a digital camera (Fire-i, UniBrain, Athens, Greece) connected to the computer 136 

took pictures of the participants’ facial expressions. This setup allowed participants to look at the 137 

pictures displayed while simultaneously looking directly into the camera. As a result, we obtained 138 

pictures of participants looking straight ahead and not downwards at the image, as would have 139 

been the case if we had used e.g. a simple laptop computer with a digital camera just above the 140 

screen.  141 

Participants sat at approximately 60 cm from the middle-point of the half mirror, which was in turn 142 

45 cm away from the display screen. To reduce head movements, we held participants' torsos 143 

loosely in place with an elastic band tied to the chair. Additionally, at the beginning of the 144 

experiment, we showed participants the image collected by the camera in real time and asked 145 

them not to make large head movements or rotations. While it would have been desirable to 146 

further limit whole-head movements using, e.g., a chin rest, we opted against this as it would have 147 

made expressions unnatural and, more importantly, because it would have provided a form of 148 
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sensory feedback, interfering with the experimental design. We ensured that participants’ faces 149 

were well-lit and took care that participants did not see any reflections of their own face on the 150 

mirror.  151 

Procedure 152 

All experimental tasks were written on MATLAB (R2016b, The Mathworks, Natick, MA), using 153 

Psychtoolbox-3 (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) and ran on MacOS. All tasks 154 

were self-paced with no time deadlines. All participants (except for one, due to technical 155 

problems) completed all tasks in the same order.  156 

Facial Expressions Task 157 

The facial expressions task consisted of three parts. In the first part (Figure 1.A), participants saw 158 

32 different pictures of four different actors in pseudorandomized order (see the description of 159 

Cue images, below) and imitated each expression as best they could. Participants pressed a key 160 

(the space bar) once they considered that their expression was as close as possible to the actor’s 161 

expression. We asked participants to try to match the low-level physical features of the face — 162 

the curvature of the lips, the elevation of the eyebrows — rather than the emotion conveyed by 163 

the expression. Upon pressing the spacebar, the digital camera behind the half-plated mirror took 164 

a picture of the participant’s facial expression, and a new trial started. On a separate test, we had 165 

determined that there was a minimum delay of approximately 80 ms between the time of key 166 

press and the time stamp of the image. Accordingly, we included in our instructions to participants 167 

to hold the expression in place after they had pressed the key that would trigger the image 168 

acquisition. 169 

The 32 pictures of participants generated in this way served as target images for the second part 170 

of the paradigm. Here, participants saw the target images and tried to reproduce their own 171 

expressions. Once again, we emphasized that the goal was to match the low-level physical 172 

features of the face rather than the emotion conveyed. After each trial, participants used a mouse 173 

to rate their confidence (on a visual analogue scale) regarding how well they thought that they 174 

had imitated their own previous expression. Participants saw each of their 32 target expressions 175 

repeated 8 times in random order (256 trials in total). We only revealed that they would have to 176 

reproduce their own expressions after the first part of the experiment was complete. Parts 1 and 177 

2 of the experiment took on average approximately 50 minutes. Before starting part 1, participants 178 

completed four practice trials where they simply imitated pictures of famous celebrities and took 179 

pictures. They did not see the resulting pictures of themselves.  180 
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In the third part of the task, participants saw each of the 256 pairs of pictures (target and response) 181 

and rated them for similarity on a scale exactly like the one they had used for confidence. This 182 

part of the experiment took on average 30 minutes.  183 

Cue images 184 

We used 32 different facial expressions as cue pictures (14 from two different male actors, 18 185 

from three different female actors) which would be used to generate participant-specific target 186 

expressions. To prevent participants from producing stereotypical target expressions, we sought 187 

pictures representing expressions that could not be unambiguously categorized as one of the 188 

basic emotions (Ekman, 1999). We selected pictures from the MPI Small Facial Expression 189 

Database (Cunningham et al., 2005), which includes video sequences of expressions based on 190 

a method acting protocol in which actors produce non-standard expressions by imagining 191 

themselves in a situation described by a brief scenario and reacting accordingly. Example 192 

descriptions of expressions include: “Somebody suggests to try something. You hesitate at first, 193 

then you agree”, or “You have reached a goal and you are happy to have accomplished it”. 194 

Additionally, we selected still images from the video sequence that did not correspond to the peak 195 

expression, but instead to an intermediate step. We assume that, as a result, the cue images 196 

could not easily be labelled as stereotypical expressions (e.g., “happy”, “sad”) for which 197 

participants might have a predefined motor program but are instead the result of an unusual and 198 

idiosyncratic combination of gestures. Note that, as the samples in Figure 1.C show, these cue 199 

images were not unnatural grimaces and so the paradigm remains ecologically valid. We 200 

reasoned that these non-canonical expressions would maximize motor variability, ensuring that 201 

confidence ratings could be based only on a true evaluation of trial-by-trial performance and not 202 

on a general knowledge of how reproducible a given expression was.  203 

Visual Task 204 

Each participant completed 200 trials of a visual metacognition task 205 

(https://github.com/metacoglab/meta_dots). On each trial of this task, two circles enclosing sets 206 

of dots appeared for 200 ms on either side of a central fixation cross (each circle with a radius of 207 

5 degrees of visual angle, located along the middle of the screen, with an eccentricity from the 208 

vertical midline of 5.5 degrees of visual angle). One of the two circles always contained 50 dots 209 

while the other varied in dot number, and the position (left/right) of the circles was randomized on 210 

each trial. In a 2-alternative forced-choice (2AFC) task, participants discriminated which of the 211 

circles contained more dots by pressing the left or right arrow keys on the keyboard. The 212 

https://github.com/metacoglab/meta_dots
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difference in the number of dots was determined by a pair of interleaved 2-down-1-up adaptive 213 

staircases aimed at fixing performance at around 71% accuracy. After each response, participants 214 

reported their confidence in the accuracy of their own response using the same vertical visual 215 

analogue scale that they had used for the two previous tasks rating confidence and similarity for 216 

facial expressions. 217 

Before the main visual task, we ran 80 trials of a staircase procedure where participants did only 218 

the discrimination task without rating confidence. Here we also included two interleaved 2-down-219 

1-up staircases starting from a difference of 3 and 20 dots respectively. One participant 220 

(unintentionally) received feedback about the accuracy of the discrimination task while rating 221 

confidence, so we excluded their data from the analysis. The visual task took approximately 20 222 

minutes. Over all participants, we also excluded 2% of the trials where the reaction times to either 223 

the discrimination task or the confidence rating were faster than 300 ms or slower than 5 s. We 224 

estimated metacognitive efficiency as M-ratio after scaling and binning confidence into four 225 

discrete confidence levels based on uniform intervals.   226 

Toronto Alexithymia Scale 227 

At the end of the experiment we collected responses to a computerized version of the Toronto 228 

Alexithymia Scale, TAS (Bagby et al., 1994) running on a browser, and the data were stored 229 

locally(Lange et al., 2015) (jatos.org).  Most participants completed a German version of the scale, 230 

except for seven non-German speakers who completed an English version instead. The TAS-20 231 

consists of 20 items that can each be answered on a 5-point Likert scale. We considered three 232 

out of the four subscales (Difficulty identifying feelings, Difficulty describing feelings, and 233 

Externally-oriented thinking, but excluded the Daydreaming subscale). We calculated Bayes 234 

Factors (BF10) for correlations between these covariates and individual slopes from the estimated 235 

models using the BayesFactor package in R (version 3.6.2).   236 

Data processing and analysis 237 

Following the pre-registered plan, we excluded trials from the facial expressions task at the single 238 

participant level if RTs (time between image onset and key press) were above the 95 percentile 239 

for that participant. This cut-off was necessary because we noticed that participants sometimes 240 

laughed at their own picture or got otherwise distracted. This resulted in seven trials excluded 241 

from the entire dataset where the time to take a picture was below 300 ms, and a mean lower 242 

threshold of exclusion of 9.43 s (range: 4.0 - 18.0 s). 243 
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For each of the pictures taken, we obtained the (x,y) coordinates of landmarks distributed on the 244 

face. At pre-registration we planned to estimate the landmark positions using two different 245 

toolboxes and choose the best one to estimate distance based on the quality of the relationship 246 

to the similarity ratings. Instead, due to technical problems in running one of the toolboxes we 247 

opted for the face-alignment package (Bulat & Tzimiropoulos, 2017) alone 248 

(https://github.com/1adrianb/face-alignment v.1.0.0) together with scikit-image and pytorch to 249 

extract the landmarks from the faces, running on Python v3 in a Jupyter notebook v5. The face-250 

alignment package automatically places 68 landmarks on the face and excludes the forehead and 251 

hairline.  252 

Using MATLAB (R2020a), we computed the distance (in coordinate space) between each pair of 253 

target and response images. Using the (x,y) coordinates for all landmarks, we ran a Procrustes 254 

rigid alignment of each face in a pair to a standardized set of coordinates. Rather than including 255 

all landmarks for the Procrustes alignment, we used three reference points that vary minimally 256 

across facial expressions: The outer corners of each eye and a point just below the nose. The 257 

transformation allowed for translation, orthogonal rotation, and scaling. Thus, these linear 258 

transformations minimized the variance in the distance data that could be accounted for by head 259 

rotations and general enlargement or shrinkage due to change in the face position, while also 260 

preserving variance resulting from the differences between the expressions. It did not account for 261 

other rotations (yaw and pitch), where the relative distance between some face components can 262 

change without the facial expression being different. After rigid transformation, we calculated the 263 

total distance for each pair of target and response images as the Euclidean distance (the root of 264 

the sum of squares, see equation in Figure 1) over all 68 landmarks between the two images. We 265 

refer to this measure simply as the distance between two images. Finally, we log-transformed the 266 

obtained distances to ensure that the data were normally distributed before fitting the Bayesian 267 

mixed models.  268 

 269 

 270 

Bayesian mixed models  271 

We analysed the data using Bayesian mixed models created in Stan (http://mc-stan.org/) through 272 

the brms package (Bürkner, 2017, 2018). In all cases, we ran 4 chains with 15,000 iterations, 273 

5,000 burn-in samples each, and no thinning. We checked for convergence by visually examining 274 

the MCMC chains and ensured that the scale reduction factor (Rhat) of all models was equal or 275 

https://github.com/1adrianb/face-alignment
http://mc-stan.org/
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close to 1. We considered that ratings might vary across participants both in their mean and in 276 

their relationship to the landmark distance, and that different facial expressions might vary in their 277 

associated difficulty to both reproduce (leading to greater variability in the landmark distance) and 278 

to rate (leading to differences in the ratings). Thus, in all models and unless otherwise stated, we 279 

included random slopes for both participants and facial expressions (see the explicit model syntax 280 

in Table 1). We extracted the participant-wise random slopes using the mixedup package 281 

(https://m-clark.github.io/mixedup/). 282 

We followed recommendations (Dienes, 2019) to use heuristics to define prior distributions. We 283 

built the prior for the slope between ratings and distance based on the ratio-of-scales heuristic: 284 

we found that the range of (log-transformed) distances was approximately 3 a.u. (arbitrary units), 285 

whereas the range of confidence ratings is 1 point (minimum: 0). Therefore we used a normal 286 

prior centered on 0 with an SD = ⅓ (which corresponds to the ratio between confidence range 287 

and distance range) for the slope parameter. To find a prior for the model intercept we followed 288 

the logic behind the room-to-move heuristic. Note that raw distances ranged between [131.36 - 289 

2493.78] a.u., hence the expected rating at 0 distance (i.e., perfect performance) can be well 290 

approximated by the expected rating at distance = 1, which corresponds to the intercept in a linear 291 

model with log-transformed distances. We reasoned that a participant with maximum 292 

metacognitive performance would consistently rate their confidence as 1, when the distance 293 

between the two images was 0. Because we realistically expect participants to have (at most) 294 

less than perfect metacognitive access to their own expressions, we centered the prior at 0.8 with 295 

an SD = 0.5. Following a similar logic, we set the prior slope between the two ratings to be 296 

centered at 0 with SD = 1, and an intercept of 0 with an SD = ½. For all models, we report the 297 

estimate, its associated error mean, the 95% credibility interval (CI), and the BF10, estimated using 298 

the bayestestR package (Makowski et al., 2020), to compare each model against its null 299 

counterpart, containing the same random effects structure but not the fixed effect of interest. We 300 

also examined the posterior draws for each participant in relation to the region of practical 301 

equivalence (ROPE). We set the ROPE to a default range from -0.1 to 0.1 of a standardized 302 

parameter, which corresponds to a negligible effect size (Cohen, 1988; Kruschke & Liddell, 2018). 303 

Finally, we estimated R2 values as implemented by the brms package (Gelman et al., 2019). 304 

 305 

Table 1: Formulas for the Bayesian mixed models employed   306 

Hypothesis Model Formula Corresponding 
Figures 

https://m-clark.github.io/mixedup/
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Participants’ confidence in their 
own performance is inversely 
related to the distance between 
two images 

confidence ~ logDistance +  
(1 + logDistance | participantID) +  
(1 | expressionID) 

Figure 2 
Figure S6  

Participants’ similarity ratings 
are inversely related to the 
distance between two images 

similarity ~ logDistance +  
(1+ logDistance | participantID) +  
(1 | expressionID) 

Figure 3 
Figure S8  

Confidence and similarity 
ratings of the same participant 
are related 

confidence ~ similarity +  
(1 | participantID) + 
(1 | expressionID) 

Figure 4 

Confidence and reaction times 
are negatively related 

confidence ~ RT +  
(RT | participantID) + 
(1 | expressionID) 

- 

Confidence and ML-weighted 
distances are related 

confidence ~ MLweightDist +  
(1 + MlweightDist | participantID) +  
(1 | expressionID) 

- 

 307 

 308 

We computed metacognitive access to faces using linear regression and estimated the correlation 309 

with visual Mratios, deviating from the pre-registered plan. We initially planned to also calculate 310 

the area under a type-2 ROC curve (AUROC2) by arbitrarily assuming that first-order performance 311 

on the Faces task was at 70% accuracy and by classifying trials with distances above the 312 

corresponding threshold as “incorrect”. This analysis had the advantage that it would have 313 

allowed us to correlate metacognitive performance measured on the same scale for both tasks 314 

(Faces and Visual), but we later reasoned that it would make the results less easily interpretable 315 

while not adding explanatory power and therefore decided to omit it.  316 

Principal component regression  317 

We used machine learning tools (implemented in Python v3 and scikit-learn) to build linear 318 

regression models in order to identify predictors of subjective confidence in the landmark 319 

information. We analysed each participant separately. We first determined the distance (a 2-320 

component vector) for each landmark distance as the (x,y) coordinate differences between the 321 

two images and further decomposed each of the 68 distances into four zero- or positive scalar 322 

features (one for each cardinal direction, for a total of 272). This allowed different directions of 323 
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movement to be weighted differently by the model. We normalized each feature by dividing it by 324 

its median. Then, we applied dimensionality reduction using principal component analysis with a 325 

set number of principal components (66, or approximately 90% of the variance from all subjects) 326 

in order to avoid multicollinearity among the features. Finally, a least squares linear regression 327 

model was trained for each participant using trial-wise leave-one-out cross-validation. The models 328 

aimed to predict subjective confidence ratings (or similarity ratings, see Supplementary analyses) 329 

using as predictors the values of the principal components derived from the collection of scalar 330 

differences for all landmarks together.  331 

The resulting model weights referred to features in principal component space. We translated the 332 

model weights back into landmark space (i.e., x,y coordinates of the facial landmarks). To do so, 333 

we approximated the weight 𝑤 of each feature 𝑓 using the expression in (1): 334 

𝑤𝑓 = σ 𝜆𝑓,𝑐 ×𝜔𝑐
66
𝑐=1           (1) 335 

Where 𝜆𝑓,𝑐 is the loading of feature 𝑓 on principal component 𝑐, and 𝜔𝑐 is the linear regression 336 

model’s weighting of principal component 𝑐.  337 

To reconstruct the distances weighted by the results of each linear regression model, we used 338 

expression (2): 339 

𝑅𝑆𝑆𝑄𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = ටσ 𝑤𝑓 × 𝑓2272
𝑓=1               (2) 340 

Where wf
  denotes the weights for each feature f, which is in turn the difference between response 341 

and target images for each cardinal direction, for a given landmark, if the difference was positive, 342 

and 0 otherwise. Note that unlike the case for the Euclidean distance, where distances were 343 

forced to be positive and each of them had an effective weight of 1, here we allowed the feature 344 

weights to be signed. For those cases where the term under the square root was negative, we 345 

calculated the root of the absolute value and then reversed the sign. Note that RSSQweighted is now 346 

better interpreted as a measure of performance, and not distance: because the ML-derived 347 

weights already account for the negative relationship between distance and confidence, 348 

RSSQweighted is expected to show a positive relationship to confidence.  349 

We obtained adjusted R2 for each (participant-specific) model values and compared them using 350 

a Bayesian Wilcoxon Signed-Rank test (Doorn et al., 2020) as implemented in JASP (JASP 351 

Team, 2020) v0.14 with 10,000 MCMC samples and 5 chains, and a default Cauchy prior. 352 
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 353 
 354 
Results 355 

Confirmatory Analyses 356 

The distance between any pair of images is an inverse measure of performance in the task, as 357 

greater distance corresponds to a poorer match between target and response expressions. Thus, 358 

we reasoned that participants with precise metacognitive access to their facial expressions would 359 

have a sharp relationship between the distance between two images and the confidence ratings. 360 

The estimated regression coefficients from a multilevel model of these data should be negative 361 

and clearly different from zero. On the other hand, if a participant had no access to their own 362 

performance, their judgments would bear no relationship to the distance between two images, 363 

and the regression coefficients would be indistinguishable from zero (Figure 1B, Predictions).  364 

To arbitrate between these two possibilities, we first quantified our participants’ metacognitive 365 

access to their own facial expressions using a Bayesian linear mixed-effects regression model of 366 

participants’ confidence ratings. The model included the log-transformed distances as a fixed 367 

effect (for all 68 landmarks combined), as well as random intercepts for participant and facial 368 

expression. The random intercepts capture metacognitive bias, or each participant’s tendency to 369 

rate high confidence, whereas the estimated slope of the model captures a measure akin to 370 

metacognitive sensitivity, or the relationship between confidence and performance at the group 371 

level (Fleming & Lau, 2014) — note however that these two elements may not be independent  372 

(Rausch & Zehetleitner, 2017). We found that participants’ confidence ratings had a small 373 

negative relationship to the distance measured (Figure 2.A, M = -0.03 ± 0.01, CI = [-0.05, -0.01], 374 

R2 = 0.21, see also supplementary Figure S1 for the participant-wise data). However, when 375 

compared to the null model without the effect of distance, we found only anecdotal evidence 376 

(Jeffreys, 1998) for the relationship between the two (BF10= 2.20). Further, a robustness check 377 

revealed that, as expected given the proximity of the posterior samples to the region of practical 378 

equivalence (ROPE, defined following the default criterion of the region corresponding to a 379 

Cohen’s d of 0.1, Figure 2.B), the choice of the SD of the prior distribution had a strong effect on 380 

the BF10: Widening the prior distribution from 0.4 to 0.7 led to a BF10 = 1.02, and greater SDs also 381 

strongly reduced the value of the BF10. Together, these results point to no evidence for a 382 

relationship between confidence and distance. For illustration purposes, we plot the participant-383 

wise posterior draws, in relationship to the ROPE (Figure 2.C). 384 

 385 
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 386 

Figure 2. Metacognitive access to facial expressions (A.) Group effects reflecting mean metacognitive 387 
access, namely the relationship between confidence ratings and distance between two images (inverse of 388 
performance). A small but consistently negative slope suggests that participants had minimal metacognitive 389 
access to their own expressions. The solid line represents the mean of the posterior draws, the shaded 390 
region represents the 95% credibility interval. (B.) Posterior draws for the group-level fixed effect of 391 
distance, shown in relation to the ROPE, marked with dashed lines. The black horizontal line indicates the 392 
mean and 95% HDI. (C.) Posterior draws for each participant, shown in relationship to the ROPE. Note that 393 
the y-axis is clipped to better display the distributions around the ROPE and therefore excludes the long 394 
tails of some of the distributions. Participants are ordered following the mean slope estimate and might not 395 
be aligned across figures.  396 

 397 

Then, to quantify the relationship between distance and similarity, we built a regression model of 398 

participants’ similarity ratings including, as before, the log-transformed landmark distances as a 399 

fixed effect (for all 68 landmarks combined), as well as random intercepts for participant and facial 400 

expression. Here, similarity ratings did track the distance (Figure 3 and supplementary Figure 401 

S2). We found a clear and, as expected, negative relationship between the two (M = -0.12 ± 0.01, 402 

CI = [-0.14, -0.09], BF10 = 8.01x108, R2 = 0.26). This shows that the distance we measured carried 403 

information relevant for similarity ratings and thus the null effect above cannot be simply due to a 404 

poor measure of distance. Relatedly, it shows that participants were not consistently poor at 405 

reproducing their own facial expressions but that, instead, there was enough variability in their 406 

performance that participants recognized in their similarity ratings. Additionally, because the same 407 

participants rated both confidence and similarity, the differences between the two ratings cannot 408 
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be attributed to trivial effects such as a poor understanding of the confidence scale or task 409 

instructions, or simple lack of motivation.  410 

An advantage of similarity as compared to confidence ratings is almost trivial, as participants 411 

could see the picture pairs side-by-side to rate similarity, but not confidence. Hence, we interpret 412 

this result as suggesting that the landmark distances were indeed related to similarity, but make 413 

no statistical comparisons between the two kinds of ratings. Nevertheless, we can use the slope 414 

of the relationship between similarity and distance as a plausible maximum for the relationship 415 

between confidence and distance. Then, the ratio between mean slope estimates is -0.03 / - 0.12 416 

= 0.25. That is, we found the relationship between confidence and distance to be approximately 417 

four times noisier than that between similarity and distance.  418 

 419 

 420 

Figure 3. The distance between two images captures relevant information. (A.) Group effects 421 
reflecting the information contained in the distance between two images, namely the relationship between 422 
the similarity ratings provided by participants (when viewing each image pair side-by-side) and distance 423 
between two images. The solid line represents the mean of the posterior draws, and the shaded region 424 
represents the 95% credibility interval. (B.) Posterior draws for the group-level fixed effect of distance, 425 
shown in relation to the ROPE, marked with dashed lines. The black horizontal line indicates the mean and 426 
95% HDI. (C.) Posterior draws for each participant, shown in relation to the ROPE. Note that the y-axis is 427 
clipped to better display the distributions around the ROPE and therefore excludes the long tails of some 428 
of the distributions. Participants are ordered following the mean slope estimate and might not be aligned 429 
across figures.  430 
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 431 

Finally, following our pre-registered plan, we explored relationships between the participant-wise 432 

random slopes with Mratio, a measure of visual metacognitive efficiency (Maniscalco & Lau, 2012) 433 

in a visual task. We found that visual Mratio was consistently above the chance level of 0 (M= 434 

0.75, SD = 0.57, t(38) = 8.15, p < 0.001, BF10 = 1.54x107, estimated with a default Cauchy prior) 435 

but that it did not correlate with participant-wise effects of distance on confidence (Figure 4.A, r = 436 

-0.19, p = 0.25, BF10 = 0.64, with a default shifted beta prior distribution). While the two measures 437 

of metacognitive access are not strictly comparable (the visual Mratio is controlled for first-order 438 

performance but the individual effects of distance on confidence are not), this analysis shows that 439 

partial metacognitive access to facial expressions cannot be attributed to generally low domain-440 

general metacognitive insight (Rouault et al., 2018).  441 

Using Pearson correlations, we also measured potential associations between the inter-individual 442 

differences in metacognitive access to facial expressions and Alexithymia scores, as an indication 443 

of each participant’s ability to identify and describe their own feelings. We found no conclusive 444 

evidence for or against any relationships between alexithymia score and the participant-wise 445 

effect of distance on confidence (r = -0.202, p = 0.217, BF10  = 0.70, Figure 4.B) or on similarity 446 

ratings (r = -0.108, p = 0.513, BF10 = 0.43). We also found no association between alexithymia 447 

score and visual metacognitive efficiency (r = 0.07, p = 0.67, BF10 = 0.38). 448 

 449 

 450 

Figure 4: Correlations between participant-wise estimates of metacognitive access to facial 451 
expressions and other measures of insight. Each dot corresponds to one participant’s performance 452 
estimate, and the box- and density plots on the right represent the marginal distribution of the corresponding 453 
variable on the y axis. A. Metacognitive efficiency (Mratio) in a visual task. Participants’ metacognitive 454 
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efficiency was significantly better than chance performance (marked with the horizontal dashed line). B. 455 
Alexithymia score (TAS). We found no evidence for a correlation between metacognitive estimates and 456 
these measures of insight.   457 

 458 

Exploratory Analyses 459 

For completeness, we studied the relationship between similarity and confidence ratings. We built 460 

a Bayesian linear regression model of participants’ confidence ratings, this time including the 461 

similarity ratings as a fixed effect and random intercepts for participant and facial expression. We 462 

found a clear positive relationship between the two ratings (M = 0.10 ± 0.01, CI = [0.09, 0.12], 463 

BF10 = 6.36 x 1031, R2 = 0.21, Figure 5 and supplementary Figure S6). This suggests that 464 

participants’ confidence ratings were not random or noisy but rather that they simply did not reflect 465 

the low-level features captured by the distance.  Thus, similarity ratings complement the results 466 

shown on Figure 3. The trial-wise relationship between confidence and similarity ratings suggests 467 

that both ratings corresponded to a valid aspect of the facial expressions. Just only partially to the 468 

low-level aspects of facial expressions (as the analysis corresponding to Figure 2 shows).  469 

 470 

 471 

Figure 5: Similarity ratings vary with confidence ratings. (A.) Group effects showing the relationship 472 
between the two ratings on image pairs provided by participants (similarity vs. confidence). The solid line 473 
represents the mean of the posterior draws, and the shaded region represents the 95% credibility interval. 474 
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(B.) Posterior draws for the group-level fixed effect of confidence on similarity, shown in relation to the 475 
ROPE, marked with dashed lines. The black horizontal line indicates the mean and 95% HDI.  (C.) Posterior 476 
draws for each participant, shown in relation to the ROPE. Participants are ordered following the mean 477 
slope estimate and might not be aligned across figures.  478 

  479 

 480 

Our results so far suggest that participants’ confidence ratings only partially reflected 481 

performance, calculated as the Euclidean distance over all landmarks. In a final set of exploratory 482 

analyses, we therefore aimed at identifying which pieces of information participants may have 483 

informed confidence ratings. 484 

The Euclidean distance between image pairs assigns equal weights to the distances of all facial 485 

landmarks and is therefore a relatively naive measure of the difference between expressions, in 486 

that it does not allow for potential differences between landmarks in their contribution to different 487 

individuals’ confidence. However, it is in principle possible that participants attended to different 488 

parts of their faces to different degrees and, further, that this differential attention was not 489 

consistent across participants. For example, one participant may have focused almost exclusively 490 

on how well their mouth matched the target image to rate their confidence, and another participant 491 

may have focused exclusively on the eyes and ignored the mouth. While this was against the task 492 

instructions, it remains a possibility that would undermine the strong claim that most participants 493 

did not base their confidence ratings on the landmark distances. To obtain a more fine-grained 494 

and flexible measure of performance we used machine learning (ML) algorithms to build a simple 495 

linear regression model to predict each participant’s confidence ratings using a principal 496 

component (PC) decomposition of the distances between corresponding landmarks as features. 497 

Building participant-wise models provided the maximum flexibility in feature weight assignment 498 

and was therefore the harshest test to the conclusion that metacognitive access to facial 499 

expressions is partial. We found that these models could in fact predict confidence ratings 500 

(median r = 0.26 ± 0.15), suggesting that participants did indeed base their confidence ratings on 501 

(specific subsets of) landmark distances. Further, because confidence is known to correlate 502 

negatively with response times, we also asked whether RTs could have served as a proxy for 503 

distance. We found that the landmark distances could be used to build ML models that predicted 504 

confidence ratings above and beyond RT information alone, confirming that participants did use 505 

some of the landmark distance information to rate confidence (see supplementary Figure S4). 506 
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To better understand which information participants used to rate their own performance, we 507 

reconstructed the weights of each feature in landmark space (based on the model’s weighting of 508 

each principal component and each feature’s loading on that component, see Methods). We first 509 

plotted the resulting landmark weights on their corresponding mean locations to explore potential 510 

patterns among participants based on the set of landmarks with the highest weights (both visually 511 

and by considering the median weight over all landmarks); however, we could not identify any 512 

landmarks or features that were consistently prioritized across participants (Figure 6). Individual 513 

participants’ ML feature weights can be seen at 514 

https://metamotorlab.filevich.com/onlineInfo_papers/cistonEtAl_2021/table2D.html). Finally, we 515 

estimated the relationship between the new landmark distance (this time considering the 516 

participant-specific weights) and confidence ratings using, as before, a linear mixed-effects 517 

regression model. In line with the non-zero r values from the ML models, the reconstructed 518 

distances showed a significant relationship with confidence ratings (M = 0.04 ± 0.004, CI = [0.03, 519 

0.04], BF10 = 1.34 x 107, R2 = 0.24). Note that the slope estimate is now positive, because the 520 

feature weights must incorporate the negative relationship between landmarks and confidence, 521 

in order to predict confidence ratings. This result is expected, as it is merely a transformation from 522 

principal components space to landmarks space, and we provide it here only to offer a result that 523 

is more intuitive to interpret. Taken together, the results suggest that participants were indeed 524 

able to base their confidence ratings on the distances between facial landmarks, but only on a 525 

subset of them; and that each participant had access to, or focused on, different aspects of their 526 

facial expressions. 527 

 528 

 529 

Figure 6: Machine Learning analyses. Average feature weights for participant-wise models of 530 
confidence ratings. Each dot represents the median feature weight for each landmark in models excluding 531 
RTs. Green and red correspond to positive and negative weights, respectively. The size of the dot 532 
corresponds to the relative magnitude of the landmark’s approximated weight within the model, and their 533 
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positions correspond to a normalized face. Each landmark is split into the four cardinal directions, to yield 534 
four independent features (see Methods for details). We found no consistent pattern over participants where 535 
some features are weighted more strongly than others, see 536 
https://gitlab.com/elisa.filevich/cistonetal_metacognitionoffacialexpressions for an interactive table with 537 
participant-wise weights.  538 

  539 
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Discussion 540 

We asked how precisely we can describe how our faces look when we make expressions. We 541 

quantified young, healthy adults’ metacognitive access to the low-level details of their own facial 542 

expressions. We emphasized to participants that we were focused on the specific shape of the 543 

face and activation of the muscles, not on the emotion that the expression conveyed. We found 544 

a negative, but weak, relationship between subjective confidence and distance.  A priori, this can 545 

be interpreted in two (non-exclusive) ways: Participants' confidence ratings may not have strongly 546 

relied on the distance between a pair of images because they truly had little or no metacognitive 547 

access to their own facial expressions. Alternatively, our measured distance based on the whole 548 

set of landmarks may have been a very noisy or even invalid measure of performance. In turn, 549 

this alternative explanation would mean that it would be invalid to quantify metacognitive access 550 

as we did. To ensure that the second alternative could not fully explain our results, we quantified 551 

the relationship between ratings of similarity (provided by the participants themselves while 552 

viewing image pairs side-by-side) and distance (based on the whole set of landmarks, combined 553 

with equal weights). The maximum theoretical slope of the relationship between a rating and the 554 

distance between image pairs is given by the ratio between the range of possible ratings and the 555 

maximum distance between two corresponding images. However, we expected the empirical 556 

relationships between ratings and distance to be lower than this theoretical maximum. We 557 

reasoned that the magnitude of the relationship between similarity and distance effectively 558 

quantifies the empirical maximum for this paradigm, as it accounts for noise in the estimation of 559 

distance (which in turn includes the resolution of the images, errors in the landmark placement, 560 

and limitations of the rigid transformations) as well as noise in the use of the rating scale. We 561 

found that the slope of the relationship between similarity ratings and distance was approximately 562 

four times greater than that of the relationship between confidence and distance. This result 563 

suggests, first, that the relationship between confidence and distance reveals sources of noise 564 

beyond those due to a poor use or understanding of the confidence scale, or to generally poor 565 

performance in the movement task. More specifically, if participants had not understood the 566 

instructions, or chosen not to follow them when providing confidence ratings, then presumably 567 

the same would have been the case for similarity ratings. It would require an additional 568 

assumption to interpret these data as evidence that participants could have, but chose not to, 569 

attend to the low-level aspects of their facial expressions when rating confidence and that they 570 

then changed their behaviour when rating similarity. Instead, a more parsimonious explanation is 571 

that participants found it hard to access the low-level details of their expressions when they did 572 

not have visual access to them. Second, the analysis of similarity ratings suggests that 573 
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participants were not simply generally poor at the self-imitation task. Instead, there was enough 574 

variability in performance across trials that informed participants’ similarity ratings. In other words, 575 

the clear relationship between distance and similarity indicates that there was enough meaningful 576 

variability in both variables included in the analysis. 577 

It is important to emphasize that a statistical difference between the strengths of the association 578 

between distance and the two kinds of ratings (namely confidence and similarity), is expected, 579 

but also trivial. Participants had no visual information about the expression they were making 580 

when rating confidence, whereas they could do careful comparisons of image pairs using all 581 

available visual information to rate similarity. We therefore did not compute a statistical 582 

comparison. Instead, we make separate inferences based solely on the estimation of the effect 583 

size and reliability for each of the associations, and the comparison between each full model 584 

including the effect of interest and its null counterpart. Simply put, the analysis of the relationships 585 

between confidence and distance suggests that participants only had partial access to their own 586 

performance. On the other hand, the analysis of the relationships between similarity and distance 587 

suggests that we measured performance adequately. A numerical comparison between the two 588 

allows us to interpret the magnitude of the relationship between confidence and distance, by 589 

providing a range of values that this relationship could plausibly take.  590 

We also ran a series of exploratory analyses. First, to exploit inter-individual variability, we 591 

estimated the correlations between individual estimates of the relationship between distance and 592 

confidence and other measures of insight, namely visual metacognitive efficiency estimates and 593 

alexithymia scores. No conclusive relationships emerged that could explain the variations 594 

between individuals. Further, in another exploratory analysis, we considered that the summary 595 

distance measure could not discriminate between landmarks that heavily informed participants’ 596 

confidence ratings and those that were ignored. In other words, confidence ratings may have 597 

depended on performance defined by a subset of landmarks, which may not have been the same 598 

for all participants, or indeed for all trials of a given participant. To examine this possibility, we 599 

built linear regression models on confidence ratings that included the differences for each 600 

landmark as individual features (each of them separated into the four cardinal directions). This 601 

analysis revealed that the models built for all participants could predict confidence from the 602 

combined features — and could do so with better accuracy than the models relying solely on 603 

reaction times, which we expected to be predictive of confidence based on previous literature 604 

(Rahnev et al., 2020; Vickers & Packer, 1982). This result suggests that participants’ confidence 605 

ratings do indeed carry information about the landmark distance between target and response 606 
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expressions. But, unlike what the linear regression analyses assumed, not all landmarks 607 

contribute equally: The contributions from each landmark were not consistent between 608 

participants and, in fact, some landmarks contributed in a way that was contrary to what was 609 

expected (i.e. larger distances were associated with higher confidence). In sum, while some 610 

aspects of participants’ facial expressions led (idiosyncratically) to higher confidence ratings, 611 

these ratings were not indicative of performance. Critically, we note that a portion of the variability 612 

in facial expressions did not inform confidence ratings. This implies that participants were able to 613 

control specific aspects of their faces without having metacognitive access to this control. On the 614 

basis of these findings, we argue that there is a disconnect between participants’ ability to control 615 

their faces (through their low-level features) and their assessment of performance. The (four 616 

times) greater amount of variance in distance captured by similarity ratings as compared to 617 

confidence ratings supports this interpretation and argues against the simpler alternative 618 

interpretation, that the measured distance that included all landmarks was too coarse or 619 

inadequate because it ignored idiosyncrasies in facial landmarks relevant for performance.  620 

To rate confidence, participants may have used heuristics or proxies for performance, like 621 

perceived difficulty of the target expression. Further research may be necessary to study this or 622 

other potential strategies that participants may have used to solve the task.  623 

If it is indeed the case that young, healthy volunteers have only partial access to their own facial 624 

expressions, the obvious question arises: Does this affect our ability to communicate effectively 625 

in society? Drawing from previous literature, we assume that each facial expression carries both 626 

low-level information (the specific degree of contraction of each muscle and consequent location 627 

of the landmarks) and high-level information (the emotion conveyed) and that these two bits of 628 

information are not necessarily correlated. Previous work has addressed healthy adults’ 629 

awareness of their emotions and consequent expressions. Overall, these studies revealed that 630 

while participants often overestimate their expressivity, their access is not zero (Barr & Kleck, 631 

1995; Gilovich et al., 1998; Gross & John, 1997; Qu et al., 2017; Rosenberg & Ekman, 1994; 632 

Wagner et al., 2003). Hence, the effects we observed here are valid for the low-level features 633 

which we asked participants to concentrate on, but they may not extrapolate to the high-level 634 

features of facial expressions, namely the expression they communicate.  635 

To bring our results together with those of previous literature, we put forward a simple model 636 

(Figure 7). In our study, we measured distance using an algorithm that, we assume, has no access 637 

to high-level information. Similarity ratings, on the other hand, were made by human observers 638 

(the study participants) and therefore were based on both the low-level features (by design, in 639 
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line with our instructions) and high-level emotional information that is automatically processed 640 

(LeDoux & Bemporad, 1997), as we discussed above. On the basis of our results, we contend 641 

that confidence ratings may be based chiefly on high-level information, as they only partially 642 

incorporate low-level information. Then, the shared (high-level) information between similarity and 643 

confidence ratings explains the correlation between the two. Finally, the dissociation between 644 

low- and high-level information, together with their unequal contribution to different ratings, 645 

explains why confidence and distance are in turn dissociated.   646 

 647 

Figure 7: Suggested model for metacognitive access to facial expressions. We consider that each 648 
facial expression carries both low-level and high-level information (here depicted as circles because they 649 
are akin to latent variables in a structural equation model, whereas the measured variables of Distance and 650 
Confidence are depicted as squares). We also consider that the distance we measured is solely based on 651 
low-level information that the algorithm has access to. Thus, this simple suggested model (where 652 
confidence has accurate access to high-level but only partial access to low-level information, and where 653 
similarity ratings by human judges are informed by both low- and high-level aspects of each image) is 654 
sufficient to explain both, on the one hand, the relationships that we observed between distance and 655 
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similarity and between similarity and confidence, and on the other hand, the dissociations we found between 656 
confidence and distance.   657 

 658 

The distinction between metacognitive access to high- and low-level features of facial expressions 659 

is compatible with previous literature. First, brain regions involved in assigning confidence to the 660 

accuracy of purely perceptual decisions (the thickness of a horizontal bar presented above-661 

fixation) differ from those assigning confidence to decisions about emotional faces (Bègue et al., 662 

2019). Second, continuous theta-burst suppression to the lateral prefrontal cortex led to a 663 

decrease in metacognitive performance in a task that relied on the low-level aspects of faces 664 

(discriminating between the orientation of two faces) but not one that relied on high-level aspects 665 

(discriminating the expression they communicated) (Lapate et al., 2020). Together, these results 666 

support a distinction between metacognitive access to high- and low-level features of seen faces 667 

(i.e., others’ faces). We extend these results and suggest that this distinction may also apply to 668 

the case of one’s own face, even when not seen. 669 

Facial muscles appear to lack muscle spindles (Goodmurphy & Ovalle, 1999; Happak et al., 1994; 670 

Rinn, 1984; Stål et al., 1987, 1990), which are the main sensors for skeletal muscle stretching 671 

(Proske & Gandevia, 2012; Sherrington, 1906; Tuthill & Azim, 2018). Instead, other 672 

mechanoreceptors have been suggested to replace muscle spindles in their transduction of 673 

electric signals elicited by facial muscles (Cobo et al., 2017). In contrast to what we described for 674 

facial muscles, young, healthy participants have above-chance and precise metacognitive access 675 

to movements that are controlled by skeletal muscles (Charles et al., 2020). Moreover, unlike the 676 

case of metacognition of facial expressions, measures of metacognitive performance in motor 677 

control do partially correlate with those from a visual task (Arbuzova et al., 2021). Speculatively, 678 

at least two factors may explain these discrepancies. First, different stretch receptors may lead to 679 

different kinds of representations that may be differentially accessible to metacognitive 680 

monitoring. Second, visual feedback during development and motor learning might play an 681 

important role. Extensive motor learning and concomitant visual information for limbs that are in 682 

the field of view may shape and lead to sharper conscious representations in a way that is not 683 

possible for facial expressions.  684 

 685 

Relationship to other metacognitive tasks  686 
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Many of the recent studies measuring metacognitive performance have capitalized on a relatively 687 

rigid operationalization of metacognition that quantifies metacognitive performance as the 688 

relationship between subjective confidence ratings (the second-order task) and objective 689 

performance in a 2AFC (the first-order task), and especially in whether a participant is able to 690 

assign high confidence exclusively to correct trials (Fleming & Lau, 2014). Unlike most 691 

experiments on metacognition, where experimenters can very easily control the (often visual) 692 

stimuli that they present to participants, the study of motor metacognition requires participants to 693 

make a movement in the first place, thereby adding another task to the standard 694 

operationalization. Participants make a movement (zero-order), then make a (first-order) 695 

judgment about it, and finally provide a (second-order) subjective confidence rating. Examples of 696 

a zero-order task include moving a finger at a given pace (Charles et al., 2020) or throwing a ball 697 

to hit a target (Arbuzova et al., 2021). A different approach, which we took here, consists in 698 

operationalizing the metacognitive judgment not as confidence in accuracy of a binary choice, but 699 

instead as a judgment of performance (Locke et al., 2020; McIntosh et al., 2019; Mole et al., 700 

2018). While both operationalizations may be valid, it is important to note the differences between 701 

them to prevent assuming unwarranted relationships: The first approach, borrowed from 702 

paradigms developed for perceptual tasks, makes a very clear distinction between three different 703 

tasks with, in principle, independent performance levels. In a ball-throwing task, a person could 704 

miss a target often (poor zero-order performance), be good at discriminating whether the 705 

movement they made would hit the target or not (high first-order performance), but assign high 706 

and low confidence equally often to correct and incorrect discrimination trials (low second-order 707 

performance). This sharp distinction between three cognitive levels is elegant and makes 708 

metacognitive motor tasks directly comparable to perceptual ones. To test metacognitive access 709 

to the low-level details of facial expressions, as we did here, but using a 2AFC task, future studies 710 

could require participants to produce one expression and then discriminate between two images 711 

of themselves (one corresponding to the current expression, and one corresponding to a previous 712 

trial) to decide which of them they produced in the current trial. However, the comparison between 713 

motor and perceptual tasks may not be as straightforward as it appears to be (Chambon et al., 714 

2014). It has been argued that this rigid operationalization ignores a distinctive feature of 715 

(sensori)motor performance monitoring: In making a movement, we must monitor our 716 

performance in relationship to the intended goal, which includes not only perceptual uncertainty 717 

but also motor noise and skill (Froemer et al., 2018; Locke et al., 2020). Thus, the approach of 718 

asking participants to rate their own performance allowed us to measure metacognitive access 719 
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as the relationship between true performance and the (arguably) ecologically relevant estimate of 720 

subjective performance.  721 

 722 

Limitations 723 

Our conclusion relies on two main assumptions. First, we assume that participants followed our 724 

instructions to focus on the low-level facial features both while making and while rating facial 725 

expressions. While, as we argued above, this assumption is supported by the similarity ratings, it 726 

would lead to different conclusions if our assumption were incorrect. Second, our conclusions are 727 

only valid if the distance estimated by the algorithms is valid as a ‘true’ measure of performance 728 

on each trial, which we assumed. We argue that this assumption is valid for two main reasons. 729 

First, we specifically instructed participants to focus on the low-level aspects of their facial 730 

expressions. Second, we found very similar results using two completely different algorithms to 731 

place facial landmarks (see Supplementary Information), suggesting that this measure of distance 732 

captures true differences in facial features and does not depend heavily on the idiosyncrasies of 733 

the algorithm. However, it could be argued that similarity ratings are in fact a better, truer measure 734 

of performance because they reflect how similarly two faces are perceived by a person (either a 735 

judge or the very same participant) in an ecologically valid setting. Against this intuition, we argue 736 

that similarity ratings could have been subject to the same biases and heuristics that confidence 737 

may have relied on. As a very simplistic example, a given participant could have consistently rated 738 

positive expressions with higher confidence and similarity than negative expressions, leading to 739 

a relationship between the two kinds of ratings that need not be explained by metacognitive 740 

access. We note, however, that this alternative analysis of the data, based on different 741 

assumptions, would have led to the cardinally opposite conclusion that participants do have 742 

precise metacognitive access to their own expressions.   743 

A second limitation has to do with the predictive power of our statistical models. Despite robust 744 

effects in the Bayesian mixed models, a significant amount of variability is left unexplained (see 745 

SI). Better measures of distance, more precise motion tracking technologies (like infrared 746 

reflectors placed on the face), or different analysis methods may have reduced this unexplained 747 

variance. Additionally, we note that our analyses are based on static images, namely the 748 

endpoints of otherwise dynamic expressions. But important information is conveyed in the 749 

dynamic pattern of facial expressions (Chiovetto et al., 2018; Dobs et al., 2018; Krumhuber et al., 750 
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2016), and a future direction of this work might be to relate confidence to dynamic aspects of 751 

facial expressions instead.  752 

Finally, while the exploratory machine learning analyses allowed us to identify potential aspects 753 

of the face that participants attended to while ignoring others, we might have failed to detect any 754 

true effects where the relationship between confidence and distance differed between 755 

expressions, or relationships that changed significantly over the course of the experimental 756 

session.  757 

It could be argued that the use of non-canonical expressions limits the ecological validity of our 758 

paradigm. However, we note that in this study we were interested in studying a potential 759 

disconnect between (zero-order) motor control and (second-order) metacognitive access to it. 760 

Canonical expressions, where a highly trained and stereotypical set of movements correspond, 761 

one-to-one, to a specific expression, confound motor control with emotional content and would 762 

not have allowed us to make any inferences about which kind of information participants were 763 

accessing to make their judgments. For instance, had we asked participants to make a 764 

stereotypical “happy” expression and then rated confidence, we would not have been able to 765 

determine whether their confidence judgments were well calibrated with the emotional state they 766 

recreated, the highly-trained motor program, or the end state of the target expression. In short, 767 

canonical expressions would have carried with them a set of confounds that our paradigm 768 

avoided. However, we speculate that, had we chosen to use standard, instead of non-canonical 769 

expressions as cues, confidence ratings of emotions would have been even more poorly attuned 770 

to the low-level details of the expressions. If there is indeed a disconnect between low- and high-771 

level aspects of facial expressions, using expressions that could have been well imitated by 772 

focusing on the high-level emotional content alone would have made it even harder to report on 773 

the low-level details. 774 

 775 

Conclusion 776 

Our analyses suggest that healthy young volunteers were only able to estimate their performance 777 

in producing non-stereotypical facial expressions based on partial information. This is surprising, 778 

we argue, because it sets facial movements apart from other body movements (namely those of 779 

arms and fingers), for which, as previous studies have shown, we do have precise metacognitive 780 

access to lower-level motor information, even when this information is decoupled from the motor 781 



 

29 

goal. We speculate that this distinction might be related to the lack of concurrent visual information 782 

during social interactions, but our speculation will need to be examined in future studies. 783 

 784 

 785 
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